Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.968
Filtrar
1.
PeerJ ; 12: e17170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590701

RESUMO

Introduction: Involvement of a chemokine known as C-X-C motif chemokine ligand 10 or CXCL10 in the immunopathology of leprosy has emerged as a possible immunological marker for leprosy diagnosis and needed to be investigate further. The purpose of this systematic review is to assess CXCL10's potential utility as a leprosy diagnostic tool and evaluation of therapy. Methods: This systematic review is based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020. A thorough search was carried out to find relevant studies only in English and limited in humans published up until September 2023 using PubMed, Scopus, Science Direct, and Wiley Online Library database with keywords based on medical subject headings (MeSH) and no exclusion criteria. The Newcastle-Ottawa Scale (NOS) was utilized for quality assessment, while the Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) was utilized for assessing the risk of bias. Additionally, a narrative synthesis was conducted to provide a comprehensive review of the results. Results: We collected a total of 115 studies using defined keywords and 82 studies were eliminated after titles and abstracts were screened. We assessed the eligibility of the remaining 26 reports in full text and excluded four studies due to inappropriate study design and two studies with incomplete outcome data. There were twenty included studies in total with total of 2.525 samples. The included studies received NOS quality evaluation scores ranging from 6 to 8. The majority of items in the risk bias assessment, using RoBANS, across all included studies yielded low scores. However, certain items related to the selection of participants and confounding variables showed variations. Most of studies indicate that CXCL10 may be a helpful immunological marker for leprosy diagnosis, particularly in leprosy reactions as stated in seven studies. The results are better when paired with other immunological markers. Its effectiveness in field-friendly diagnostic tools makes it one of the potential biomarkers used in diagnosing leprosy patients. Additionally, CXCL10 may be utilized to assess the efficacy of multidrug therapy (MDT) in leprosy patients as stated in three studies. Conclusion: The results presented in this systematic review supports the importance of CXCL10 in leprosy diagnosis, particularly in leprosy responses and in tracking the efficacy of MDT therapy. Using CXCL10 in clinical settings might help with leprosy early diagnosis. Yet the findings are heterogenous, thus more investigation is required to determine the roles of CXCL10 in leprosy while taking into account for additional confounding variables.


Assuntos
Quimiocinas , Hansenostáticos , Humanos , Quimioterapia Combinada , Quimiocina CXCL10
2.
Front Immunol ; 15: 1298749, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440733

RESUMO

Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.


Assuntos
Hansenostáticos , Hanseníase , Humanos , Quimioterapia Combinada , Hansenostáticos/uso terapêutico , Hanseníase/tratamento farmacológico , Hanseníase/genética , Hanseníase/prevenção & controle , Rifampina , Imunidade
3.
Microbiol Spectr ; 12(4): e0233923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38363108

RESUMO

Macrolide antibiotics such as clarithromycin (CLR) and azithromycin are the key drugs used in multidrug therapy for Mycobacterium avium complex (MAC) diseases. For these antibacterial drugs, drug susceptibility has been correlated with clinical response in MAC diseases. We have previously demonstrated the correlation between drug susceptibility and mutations in the 23S rRNA gene, which confers resistance to macrolides. Herein, we developed a rapid detection method using the amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) technique to identify mutations in the 23S rRNA gene of M. avium. We examined the applicability of the ARMS-LAMP method to genomic DNA extracted from six genotypes of M. avium clinical isolates. The M. avium isolates were classified into 21 CLR-resistant and 9 CLR-susceptible strains based on the results of drug susceptibility tests; the 23S rRNA genes of these strains were sequenced and analyzed using the ARMS-LAMP method. Sequence analysis revealed that the 9 CLR-sensitive strains were wild-type strains, whereas the 21 CLR-resistant strains comprised 20 mutant-type strains and one wild-type strain. Using ARMS-LAMP, no amplification from genomic DNAs of the 10 wild-type strains was observed using the mutant-type mismatch primer sets (MTPSs); however, amplification from the 20 mutant-type strain DNAs was observed using the MTPSs. The rapid detection method developed by us integrates ARMS-LAMP with a real-time turbidimeter, which can help determine drug resistance in a few hours. In conclusion, ARMS-LAMP might be a new clinically beneficial technology for rapid detection of mutations.IMPORTANCEMultidrug therapy for pulmonary Mycobacterium avium complex disease is centered on the macrolide antibiotics clarithromycin and azithromycin, and resistance to macrolides is an important prognosticator for clinical aggravation. Therefore, it is important to develop a quick and easy method for detecting resistance to macrolides. Drug resistance is known to be correlated with mutations in macrolide resistance genes. We developed a rapid detection method using amplification refractory mutation system (ARMS)-loop-mediated isothermal amplification (LAMP) to identify a mutation in the 23S rRNA gene, which is a macrolide resistance gene. Furthermore, we examined the applicability of this method using M. avium clinical isolates. The rapid method developed by us for detection of the macrolide resistance gene by integrating ARMS-LAMP and a real-time turbidimeter can help in detection of drug resistance within a few hours. Since this method does not require expensive equipment or special techniques and shows high analytical speed, it would be very useful in clinical practice.


Assuntos
Antibacterianos , Pneumopatias , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Macrolídeos/farmacologia , Macrolídeos/uso terapêutico , Claritromicina/farmacologia , Mycobacterium avium , Azitromicina , Quimioterapia Combinada , Farmacorresistência Bacteriana/genética , Hansenostáticos/uso terapêutico , Mutação , Complexo Mycobacterium avium , Pneumopatias/tratamento farmacológico , Testes de Sensibilidade Microbiana
4.
Front Immunol ; 15: 1352483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415251

RESUMO

The inappropriate and inconsistent use of antibiotics in combating multidrug-resistant bacteria exacerbates their drug resistance through a few distinct pathways. Firstly, these bacteria can accumulate multiple genes, each conferring resistance to a specific drug, within a single cell. This accumulation usually takes place on resistance plasmids (R). Secondly, multidrug resistance can arise from the heightened expression of genes encoding multidrug efflux pumps, which expel a broad spectrum of drugs from the bacterial cells. Additionally, bacteria can also eliminate or destroy antibiotic molecules by modifying enzymes or cell walls and removing porins. A significant limitation of traditional multidrug therapy lies in its inability to guarantee the simultaneous delivery of various drug molecules to a specific bacterial cell, thereby fostering incremental drug resistance in either of these paths. Consequently, this approach prolongs the treatment duration. Rather than using a biologically unimportant coformer in forming cocrystals, another drug molecule can be selected either for protecting another drug molecule or, can be selected for its complementary activities to kill a bacteria cell synergistically. The development of a multidrug cocrystal not only improves tabletability and plasticity but also enables the simultaneous delivery of multiple drugs to a specific bacterial cell, philosophically perfecting multidrug therapy. By adhering to the fundamental tenets of multidrug therapy, the synergistic effects of these drug molecules can effectively eradicate bacteria, even before they have the chance to develop resistance. This approach has the potential to shorten treatment periods, reduce costs, and mitigate drug resistance. Herein, four hypotheses are presented to create complementary drug cocrystals capable of simultaneously reaching bacterial cells, effectively destroying them before multidrug resistance can develop. The ongoing surge in the development of novel drugs provides another opportunity in the fight against bacteria that are constantly gaining resistance to existing treatments. This endeavour holds the potential to combat a wide array of multidrug-resistant bacteria.


Assuntos
Farmacorresistência Bacteriana Múltipla , Hansenostáticos , Quimioterapia Combinada , Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
5.
Sci Rep ; 14(1): 4438, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396118

RESUMO

Multidrug therapy for Mycobacterium avium complex pulmonary disease (MAC-PD) results in negative sputum cultures. However, the prognostic value of this treatment approach remains unclear. This study aimed to clarify whether multidrug therapy reduces the incidence of events related to MAC-PD and improves the mortality rate. Patients who met the diagnostic criteria for MAC-PD at our hospital between 2003 and 2019 were retrospectively evaluated using medical records. Events related to MAC-PD were defined as hospitalisation for haemoptysis or respiratory infection and the development of chronic respiratory failure. There were 90 and 108 patients in the multidrug and observation groups, respectively. The median observation period was 86 months. Intergroup differences in body mass index, proportion of patients with cavities, and erythrocyte sedimentation rate were not significant. However, the observation group was older with a higher mean age (multidrug group: 62 years, observation group: 69 years; P < 0.001) and had a higher proportion of male patients (multidrug group: 13/90 [14.4%], observation group: 35/108 [32.4%]; P < 0.01). Furthermore, intergroup differences in the incidence of events related to MAC-PD (multidrug group: 26.69/1000 person-years, observation group: 25.49/1000 person-years), MAC-PD-associated mortality rate (multidrug group: 12.13/1000 person-years, observation group: 12.74/1000 person-years), and total mortality (multidrug group: 24.26/1000 person-years, observation group: 29.50/1000 person-years) were not significant. Many patients relapse even after multidrug therapy, and our findings suggest that multidrug therapy has no effect in preventing the onset of respiratory events or prolonging life expectancy.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Masculino , Pessoa de Meia-Idade , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/microbiologia , Estudos Retrospectivos , Quimioterapia Combinada , Hansenostáticos/farmacologia , Pneumopatias/microbiologia , Prognóstico
6.
Trop Med Int Health ; 29(4): 327-333, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348585

RESUMO

OBJECTIVES: Cutaneous hyperpigmentation is one of the main adverse effects encountered in patients undergoing leprosy treatment with multidrug therapy (WHO-MDT). This adverse effect has been described as intolerable and capable of contributing to social stigma. The objectives of this study were to quantify the variation in skin colour induced by clofazimine during and after treatment and to assess the related stigma. METHODS: This observational cross-sectional study objectively measured skin colour in 51 patients by reading the individual typology angle (ITA°) with a spectrophotometer, followed by the application of the Stigma Scale of the Explanatory Model Interview Catalogue (EMIC). RESULTS: Skin hyperpigmentation was observed in 100% of the individuals. They showed more negative ITA° values in lesion areas than non-lesion areas, particularly in sun-exposed regions. Clofazimine-induced cutaneous hyperpigmentation was not homogeneous and seemed to follow the lesion locations. The mean EMIC score was 18.8 points. CONCLUSION: All patients presented skin hyperpigmentation caused by clofazimine, detectable through spectrophotometry. Hyperpigmentation strongly impacted the social domain, indicating the intersectionality of disease and skin colour stigma, contributing to the social isolation of these patients. Health authorities should consider the negative impact of clofazimine on treatment adherence.


Assuntos
Hiperpigmentação , Hanseníase , Humanos , Clofazimina/efeitos adversos , Hansenostáticos/efeitos adversos , Estudos Transversais , Estigma Social , Quimioterapia Combinada , Hanseníase/tratamento farmacológico , Hanseníase/etiologia , Hiperpigmentação/induzido quimicamente , Hiperpigmentação/tratamento farmacológico , Hiperpigmentação/patologia
7.
J Cell Biochem ; 125(3): e30521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226525

RESUMO

Despite surgical treatment combined with multidrug therapy having made some progress, chemotherapy resistance is the main cause of recurrence and death of gastric cancer (GC). Gastric cancer mesenchymal stem cells (GCMSCs) have been reported to be correlated with the limited efficacy of chemotherapy in GC, but the mechanism of GCMSCs regulating GC resistance needs to be further studied. The gene set enrichment analysis (GSEA) was performed to explore the glycolysis-related pathways heterogeneity across different cell subpopulations. Glucose uptake and lactate production assays were used to evaluate the importance of B7H3 expression in GCMSCs-treated GC cells. The therapeutic efficacy of oxaliplatin (OXA) and paclitaxel (PTX) was determined using CCK-8 and colony formation assays. Signaling pathways altered by GCMSCs-CM were revealed by immunoblotting. The expression of TNF-α in GCMSCs and bone marrow mesenchymal stem cells (BMMSCs) was detected by western blot analysis and qPCR. Our results showed that the OXA and PTX resistance of GC cells were significantly enhanced in the GCMSCs-CM treated GC cells. Acquired OXA and PTX resistance was characterized by increased cell viability for OXA and PTX, the formation of cell colonies, and decreased levels of cell apoptosis, which were accompanied by reduced levels of cleaved caspase-3 and Bax expression, and increased levels of Bcl-2, HK2, MDR1, and B7H3 expression. Blocking TNF-α in GCMSCs-CM, B7H3 knockdown or the use of 2-DG, a key enzyme inhibitor of glycolysis in GC cells suppressed the OXA and PTX resistance of GC cells that had been treated with GCMSCs-CM. This study shows that GCMSCs-CM derived TNF-α could upregulate the expression of B7H3 of GC cells to promote tumor chemoresistance. Our results provide a new basis for the treatment of GC.


Assuntos
Células-Tronco Mesenquimais , Neoplasias Gástricas , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Quimioterapia Combinada , Glicólise , Hansenostáticos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Oxaliplatina/farmacologia , Oxaliplatina/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Biol Rep ; 51(1): 187, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38270684

RESUMO

BACKGROUND: Leukemias stand out for being the main type of childhood cancer in the world. Current treatments have strong side effects for patients, and there is still a high rate of development of resistance to multidrug therapy. Previously, our research group developed a structure-activity study with novel synthetic molecules analogous to LQB-278, described as an essential molecule with in vitro antileukemic action. Among these analogs, LQB-461 stood out, presenting more significant antileukemic action compared to its derivative LQB-278, with cytostatic and cytotoxicity effect by apoptosis, inducing caspase-3, and increased sub-G1 phase on cell cycle analysis. METHODS AND RESULTS: Deepening the study of the mechanism of action of LQB-461 in Jurkat cells in vitro, a microarray assay was carried out, which confirmed the importance of the apoptosis pathway in the LQB-461 activity. Through real-time PCR, we validated an increased expression of CDKN1A and BAX genes, essential mediators of the apoptosis intrinsic pathway. Through the extrinsic apoptosis pathway, we found an increased expression of the Fas receptor by flow cytometry, showing the presence of a more sensitive population and another more resistant to death. Considering the importance of autophagy in cellular resistance, it was demonstrated by western blotting that LQB-461 decreased LC-3 protein expression, an autophagic marker. CONCLUSIONS: These results suggest that this synthetic molecule LQB-461 induces cell death by apoptosis in Jurkat cells through intrinsic and extrinsic pathways and inhibits autophagy, overcoming some mechanisms of cell resistance related to this process, which differentiates LQB-461 of other drugs used for the leukemia treatment.


Assuntos
Benzaldeídos , Iminas , Hansenostáticos , Humanos , Quimioterapia Combinada , Células Jurkat , Análise de Dados
9.
PLoS Negl Trop Dis ; 18(1): e0011901, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271456

RESUMO

BACKGROUND: The occurrence of adverse drug events (ADEs) during dapsone (DDS) treatment in patients with leprosy can constitute a significant barrier to the successful completion of the standardized therapeutic regimen for this disease. Well-known DDS-ADEs are hemolytic anemia, methemoglobinemia, hepatotoxicity, agranulocytosis, and hypersensitivity reactions. Identifying risk factors for ADEs before starting World Health Organization recommended standard multidrug therapy (WHO/MDT) can guide therapeutic planning for the patient. The objective of this study was to develop a predictive model for DDS-ADEs in patients with leprosy receiving standard WHO/MDT. METHODOLOGY: This is a case-control study that involved the review of medical records of adult (≥18 years) patients registered at a Leprosy Reference Center in Rio de Janeiro, Brazil. The cohort included individuals that received standard WHO/MDT between January 2000 to December 2021. A prediction nomogram was developed by means of multivariable logistic regression (LR) using variables. The Hosmer-Lemeshow test was used to determine the model fit. Odds ratios (ORs) and their respective 95% confidence intervals (CIs) were estimated. The predictive ability of the LRM was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 329 medical records were assessed, comprising 120 cases and 209 controls. Based on the final LRM analysis, female sex (OR = 3.61; 95% CI: 2.03-6.59), multibacillary classification (OR = 2.5; 95% CI: 1.39-4.66), and higher education level (completed primary education) (OR = 1.97; 95% CI: 1.14-3.47) were considered factors to predict ADEs that caused standard WHO/MDT discontinuation. The prediction model developed had an AUC of 0.7208, that is 72% capable of predicting DDS-ADEs. CONCLUSION: We propose a clinical model that could become a helpful tool for physicians in predicting ADEs in DDS-treated leprosy patients.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Hanseníase , Adulto , Humanos , Feminino , Dapsona/efeitos adversos , Hansenostáticos/efeitos adversos , Rifampina/uso terapêutico , Quimioterapia Combinada , Estudos de Casos e Controles , Clofazimina/uso terapêutico , Brasil/epidemiologia , Hanseníase/tratamento farmacológico , Organização Mundial da Saúde
10.
Am J Trop Med Hyg ; 110(3): 483-486, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38266303

RESUMO

Leprosy is a global health issue, causing long-term functional morbidity and stigma. Rapid diagnosis and appropriate treatment are important; however, early diagnosis is often challenging, especially in nonendemic areas. Here, we report a case of borderline lepromatous leprosy accompanied by dapsone-induced (neutropenia, anemia, and methemoglobinemia) and clofazimine-induced (skin discoloration and ichthyosis) side effects and type 1 leprosy reactions during administration of the multidrug therapy. The patient completely recovered without developing any deformities or visual impairment. To ensure early diagnosis and a favorable outcome, clinicians should be aware of the diminished sensation of skin lesions as a key physical finding and manage the drug toxicities and leprosy reactions appropriately in patients on multidrug therapy.


Assuntos
Hipersensibilidade , Hanseníase Dimorfa , Hanseníase Virchowiana , Hanseníase Multibacilar , Hanseníase , Doenças do Sistema Nervoso Periférico , Dermatopatias Bacterianas , Humanos , Clofazimina/efeitos adversos , Dapsona/efeitos adversos , Quimioterapia Combinada , Hansenostáticos/efeitos adversos , Hanseníase/patologia , Hanseníase Dimorfa/diagnóstico , Hanseníase Dimorfa/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Hanseníase Multibacilar/tratamento farmacológico , Hanseníase Virchowiana/diagnóstico , Hanseníase Virchowiana/tratamento farmacológico , Hanseníase Virchowiana/patologia
11.
Mini Rev Med Chem ; 24(4): 403-430, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37198989

RESUMO

Diabetes is a chronic, and metabolic disorder that has gained epidemic proportions in the past few decades creating a threat throughout the globe. It is characterized by increased glucose levels that may be due to immune-mediated disorders (T1DM), insulin resistance or inability to produce sufficient insulin by ß-pancreatic cells (T2DM), gestational, or an increasingly sedentary lifestyle. The progression of the disease is marked by several pathological changes in the body like nephropathy, retinopathy, and various cardiovascular complications. Treatment options for T1DM are majorly focused on insulin replacement therapy. While T2DM is generally treated through oral hypoglycemics that include metformin, sulfonylureas, thiazolidinediones, meglitinides, incretins, SGLT-2 inhibitors, and amylin antagonists. Multidrug therapy is often recommended when patients are found incompliant with the first-line therapy. Despite the considerable therapeutic benefits of these oral hypoglycemics, there lie greater side effects (weight variation, upset stomach, skin rashes, and risk of hepatic disease), and limitations including short half-life, frequent dosing, and differential bioavailability which inspires the researchers to pursue novel drug targets and small molecules having promising clinical efficacy posing minimum side-effects. This review summarizes some of the current emerging novel approaches along with the conventional drug targets to treat type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Quimioterapia Combinada , Hansenostáticos/uso terapêutico , Insulina , Metformina/uso terapêutico
12.
J Infect Chemother ; 30(6): 531-535, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38141720

RESUMO

INTRODUCTION: The importance of DNA repair enzymes in maintaining genomic integrity is highlighted by the hypothesis that DNA damage by reactive oxygen/nitrogen species produced inside the host cell is essential for the mutagenesis process. Endonuclease III (Nth), formamidopyrimide (Fpg) and endonuclease VIII (Nei) DNA glycosylases are essential components of the bacterial base excision repair process. Mycobacterium leprae lost both fpg/nei genes during the reductive evolution event and only has the nth (ML2301) gene. This study aims to characterize the mutations in the nth gene of M. leprae strains and explore its correlation with drug-resistance. METHOD: A total of 91 M. leprae positive DNA samples extracted from skin biopsy samples of newly diagnosed leprosy patients from NSCB Hospital Jabalpur were assessed for the nth gene as well as drug resistance-associated loci of the rpoB, gyrA and folP1 genes through PCR followed by Sanger sequencing. RESULTS: Of these 91 patients, a total of two insertion frameshift mutations, two synonymous and seven nonsynonymous mutations were found in nth in seven samples. Sixteen samples were found to be resistant to ofloxacin and one was found to be dapsone resistant as per the known DRDR mutations. No mutations were found in the rpoB region. Interestingly, none of the nth mutations were identified in the drug-resistant associated samples. CONCLUSION: The in-silico structural analysis of the non-synonymous mutations in the Nth predicted five of them were to be deleterious. Our results suggest that the mutations in the nth gene may be potential markers for phylogenetic and epidemiological studies.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Hanseníase/genética , Hanseníase/tratamento farmacológico , Filogenia , Farmacorresistência Bacteriana/genética , Mutação , DNA Bacteriano/genética , Índia , Reparo do DNA/genética
13.
Exp Biol Med (Maywood) ; 248(22): 2083-2094, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38059475

RESUMO

Leprosy is a neglected chronic infectious disease caused by obligate intracellular bacilli, Mycobacterium leprae and Mycobacterium lepromatosis. Despite multidrug therapy (MDT) success, leprosy accounts for more than 200,000 new cases yearly. Leprosy diagnosis remains based on the dermato-neurologic examination, but histopathology of skin biopsy and bacilloscopy of intradermal scraping are subsidiary diagnostic tests that require expertise and laboratory infrastructure. This minireview summarizes the state of the art of serologic tests to aid leprosy diagnosis, highlighting enzyme-linked immunosorbent assay (ELISA) and point-of-care tests (POCT) biotechnologies. Also, the impact of the postgenomic era on the description of new recombinantly expressed M. leprae-specific protein antigens, such as leprosy Infectious Disease Research Institute (IDRI) diagnostic (LID)-1 is summarized. Highly specific and sensitive molecular techniques to detect M. leprae DNA as the quantitative polymerase chain reaction (qPCR) and the loop-mediated isothermal amplification (LAMP) are briefly reviewed. Serology studies using phenolic glycolipid-I (PGL-I) semi-synthetic antigens, LID-1 fusion antigen, and the single fusion complex natural disaccharide-octyl (NDO)-LID show high sensitivity in multibacillary (MB) patients. However, serology is not applicable to paucibacillary patients, as they have weak humoral response and robust cell-mediated response, requiring tests for cellular biomarkers. Unlike ELISA-based tests, leprosy-specific POCT based on semi-synthetic PGL-I antigens and NDO-LID 1 antigen is easy to perform, cheaper, equipment-free, and can contribute to early diagnosis avoiding permanent incapacities and helping to interrupt M. leprae transmission. Besides its use to help diagnosis of household contacts or at-risk populations in endemic areas, potential applications of leprosy serology include monitoring MDT efficacy, identification of recent infection, especially in young children, as surrogate markers of disease progression to orient adult chemoprophylaxis and as a predictor of type 2 leprosy reactions. Advances in molecular biology techniques have reduced the complexity and execution time of qPCR confirming its utility to help diagnosis while leprosy-specific LAMP holds promise as an adjunct test to detect M. leprae DNA.


Assuntos
Doenças Transmissíveis , Hanseníase , Adulto , Criança , Humanos , Pré-Escolar , Quimioterapia Combinada , Hansenostáticos , Antígenos de Bactérias , Anticorpos Antibacterianos , Hanseníase/diagnóstico , Mycobacterium leprae/genética , Glicolipídeos , DNA
14.
BMC Infect Dis ; 23(1): 853, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053036

RESUMO

BACKGROUND: Pentraxin 3 (PTX3) is a soluble pattern recognition receptor that plays a crucial role in modulating the inflammatory response and activating the complement system. Additionally, plasma PTX3 has emerged as a potential biomarker for various infectious diseases. The aim of this study was to evaluate the association of PTX3 gene polymorphisms and PTX3 plasma levels with susceptibility to leprosy and clinical characteristics. METHODS: Patients with leprosy from a hyperendemic area in the Northeast Region of Brazil were included. Healthy household contacts and healthy blood donors from the same geographical area were recruited as a control group. The rs1840680 and rs2305619 polymorphisms of PTX3 were determined by real-time PCR. Plasma levels of PTX3 were determined by ELISA. RESULTS: A total of 512 individuals were included. Of these, 273 were patients diagnosed with leprosy; 53 were household contacts, and 186 were healthy blood donors. No association was observed between PTX3 polymorphisms and susceptibility to leprosy or development of leprosy reaction or physical disability. On the other hand, plasma levels of PTX3 were significantly higher in patients with leprosy when compared to household contacts (p = 0.003) or blood donors (p = 0.04). It was also observed that PTX3 levels drop significantly after multidrug therapy (p < 0.0001). CONCLUSIONS: Our results suggest that PTX3 may play an important role in the pathogenesis of leprosy and point to the potential use of this molecule as an infection marker.


Assuntos
Hansenostáticos , Hanseníase , Humanos , Quimioterapia Combinada , Proteína C-Reativa/genética , Proteína C-Reativa/análise , Biomarcadores , Hanseníase/genética , Polimorfismo de Nucleotídeo Único
15.
Am J Trop Med Hyg ; 109(6): 1260-1265, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37931307

RESUMO

Since the introduction of multidrug therapy (MDT), various disabilities/morbidities due to leprosy have been prevented. However, there is a subset of patients in whom the skin lesions do not resolve completely or remain unchanged despite a full course of MDT, which is a great source of anxiety to the patient and their family members. Hence, we tried to ascertain the putative causes and risk factors of persistent skin lesions (PSLs) by analyzing the clinical, histopathological, bacteriological, and drug resistance patterns. This is a retrospective, cohort study wherein 35 patients who had PSLs after completion of MDT were included. The majority of the patients were 18 to 30 years of age, with males predominating. Borderline tuberculoid leprosy was the most common clinical spectrum observed (71.4%). The majority had PSLs distributed predominantly over photo-exposed sites (upper limbs > trunk > face). Eight patients (22.8%) had a history of contact with leprosy patients in their family, and six patients (17.1%) had associated comorbidities. Improvement in histopathological parameters such as a decrease in granuloma fraction was observed in 22 patients (62.8%) with PSLs after release from treatment in comparison with baseline. Four patients (11.4%) were noted to have drug resistance (three to rifampicin and one to dapsone). Thus, our study emphasizes that leprosy patients with PSLs after completion of MDT should undergo histopathological evaluation and drug resistance studies.


Assuntos
Hanseníase , Dermatopatias , Masculino , Humanos , Hansenostáticos , Estudos Retrospectivos , Quimioterapia Combinada , Estudos de Coortes , Hanseníase/complicações , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona/uso terapêutico , Dapsona/efeitos adversos , Dermatopatias/tratamento farmacológico
16.
G Ital Nefrol ; 40(Suppl 81)2023 Oct 03.
Artigo em Italiano | MEDLINE | ID: mdl-38007829

RESUMO

The introduction of innovative therapies has changed the scenario of complications. The delay in the recognition of kidney adverse effects is partly due to the timing of the development of the kidney damage which occurs later than the observation period of registration studies, and partly to the exclusion of patients with known kidney impairment from registration trials. Renal disease has a significant impact on the management of cancer patients and often leads to discontinuation of therapy. Histological evaluations of kidney disorders induced by targeted/immunotherapy are very limited. Renal biopsy is critical for the management of renal toxicities and should be especially encouraged for patients showing adverse renal effects to novel cancer agents. We recently examined the histological features of patients treated with new cancer agents who underwent renal biopsy for new onset renal failure and/or urinary abnormalities. The cohort included 42 patients. The most frequently administered therapies were immunotherapy (54.8%) and anti-angiogenic treatments (45.2%). The most common adverse effect was tubular interstitial nephritis in the first group and thrombotic microangiopathy in the second one. Based on histological findings, definitive discontinuation of treatment could be restricted to a very limited number of patients. All of them had anti-VEGF-related TMA. Treatment discontinuation was unneeded in patients treated with ICIs. In patients treated with multidrug therapy, the histological findings made it possible to identify the weight of drug-related specific injury. Based on this data, renal biopsy should be considered in every cancer patient who develops urinary abnormalities or shows a worsening of renal function during treatment with immunotherapy or targeted therapy.


Assuntos
Antineoplásicos , Nefropatias , Neoplasias , Humanos , Quimioterapia Combinada , Terapia de Alvo Molecular/efeitos adversos , Hansenostáticos/efeitos adversos , Rim/patologia , Antineoplásicos/efeitos adversos , Nefropatias/tratamento farmacológico , Neoplasias/tratamento farmacológico
17.
J Glob Antimicrob Resist ; 35: 262-267, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37852372

RESUMO

OBJECTIVES: Drug resistance in leprosy is an emerging concern, leading to treatment failures, recurrences, and potential spread of resistant Mycobacterium leprae in the community. In this study, we aimed to assess drug resistance prevalence and patterns amongst leprosy patients at a tertiary care referral hospital in India. METHODS: Mutations in drug resistance determining regions for dapsone, rifampicin, and ofloxacin of the M. leprae genome in DNA extracted from skin biopsies of 136 leprosy patients (treatment-naive = 67, with persistent skin lesions = 35, with recurrence = 34) were analysed by polymerase chain reaction followed by Sanger sequencing. Wild-type strain (Thai-53) was used as a reference strain. RESULTS: Resistance mutations were identified in a total of 23 patients, constituting 16.9% of the cohort. Within this subset of 23 cases, resistance to ofloxacin was observed in 17 individuals (12.5%), while resistance to both dapsone and rifampicin was detected in three patients each (2.2% for both). The occurrence of ofloxacin resistance showed minimal disparity between recurrent and treatment-naive cases, at 17.6% and 16.4%, respectively. Dapsone resistance emerged in two treatment-naive cases and one case with persistent skin lesions. Notably, none of the treatment-naive cases or those with recurrence/relapse exhibited rifampicin resistance. Subsequently, no statistically significant correlation was identified between other clinical variables and the presence of antimicrobial resistance. CONCLUSIONS: The occurrence of resistance to the current multidrug therapy regimen (specifically dapsone and rifampicin) and to ofloxacin, a secondary antileprosy medication in M. leprae, represents a concerning scenario. This calls for an expansion towards bactericidal drug options and the establishment of robust surveillance for drug resistance in countries burdened with high leprosy rates. Moreover, the introduction of stringent antimicrobial stewardship initiatives is imperative. As a single centre study, it represents a limited, cross-sectional view of the real situation in the field.


Assuntos
Hanseníase , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Hansenostáticos/farmacologia , Hansenostáticos/uso terapêutico , Ofloxacino/farmacologia , Quimioterapia Combinada , Estudos Transversais , Farmacorresistência Bacteriana/genética , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Dapsona/farmacologia , Dapsona/uso terapêutico , Índia/epidemiologia
18.
Int J Mycobacteriol ; 12(3): 254-260, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37721229

RESUMO

Background: Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae or Mycobacterium lepromatosis and mainly affects the skin and peripheral nerves. Although treatable, its early intervention can significantly reduce the occurrence of disability. India accounts for more than half of new cases globally. This study was undertaken to better understand the clinical traits of newly diagnosed cases in a tertiary facility of Western Uttar Pradesh, and a few from Madhya Pradesh and Uttarakhand. Methods: The observational prospective study was carried out on all the newly diagnosed leprosy cases who visited the Outpatient Department of ICMR-National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, during October 2019-December 2022. After obtaining answers to a prestructured questionnaire with their consent, participants were enrolled in the study and underwent clinical examination and a slit-skin smear test. Results: A total of 56 cases were investigated, and among them, 20 (35.7%) and 36 (64.3%) women and men, respectively, had positive contact with persons affected by leprosy either within family, friends, or neighbors. It is observed that due to the delayed detection of leprosy cases, paucibacillary (PB) patients converted into multibacillary (MB) patients, and the number of MB cases is much higher compared to PB cases. Conclusion: Leprosy instances continue to spread frequently from sick to healthy people indicating continued transmission of leprosy in society. Multidrug therapy in the management of leprosy cases is effective; however, early diagnosis of PB cases is still a challenge and needs to be addressed on priority.


Assuntos
Bacillus , Hanseníase , Feminino , Humanos , Masculino , Quimioterapia Combinada , Hansenostáticos/uso terapêutico , Hanseníase/diagnóstico , Hanseníase/tratamento farmacológico , Hanseníase/epidemiologia , Mycobacterium leprae , Estudos Prospectivos , Fatores Socioeconômicos
19.
ACS Biomater Sci Eng ; 9(10): 5724-5736, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37729089

RESUMO

In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal-organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF-thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF-thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF-thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF-thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy.


Assuntos
Cafeína , Ibuprofeno , Quimioterapia Combinada , Hansenostáticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA